Dr. Schenk’s modern production site

The SolarInspect system for the detection of local irregularities can be combined with the advanced measurement options of SolarMeasure to create a comprehensive process control solution.

The products of the SolarMeasure family perform electrical and physical measurements and are available as add-on options to the optical analysis or as stand-alone systems.

For more detailed information on these options please refer to our specific descriptions and data sheets.

For further regional sales & service representatives please refer to www.drschenk.com

Even more measurement options for even better results

In addition to the previously described measurement options Dr. Schenk offers more quality-enhancing measurement solutions that can be used in-line or as stand-alone units. True to the meaning of metrology, all measurement options provide manufacturers with data to adjust and optimize production.

The Dr. Schenk SolarMeasure Microscope Station measures the distance between and the width of scribe lines.

The Dr. Schenk SolarMeasure I-V Curve Tracer enables measurement of every single cell’s electrical performance as well as that of the whole panel.

And last not least the SolarMeasure TCO Tester completes the measurement portfolio with the in-line measurement of layer thickness, haze and resistivity of TCO coatings.

For more information and contact details: www.drschenk.com

Even more measurement options for even better results

In addition to the previously described measurement options Dr. Schenk offers more quality-enhancing measurement solutions that can be used in-line or as stand-alone units. True to the meaning of metrology, all measurement options provide manufacturers with data to adjust and optimize production.

The Dr. Schenk SolarMeasure Microscope Station measures the distance between and the width of scribe lines.

The Dr. Schenk SolarMeasure I-V Curve Tracer enables measurement of every single cell’s electrical performance as well as that of the whole panel.

And last not least the SolarMeasure TCO Tester completes the measurement portfolio with the in-line measurement of layer thickness, haze and resistivity of TCO coatings.

For more detailed information on these options please refer to our specific descriptions and data sheets.

For further regional sales & service representatives please refer to www.drschenk.com
Resistivity Measurement

This add-on to thin film module inspection measures the sheet resistance of a solar panel’s electrode coating. For optimized panel efficiency, the conductivity of the coating layer should be at a maximum even at low layer thickness.

Dr. Schenk offers a highly sensitive sensor, that performs a non-contact resistivity measurement. This in-line measurement makes use of the Eddy current principle. In its down-web movement along the line, the coated solar glass passes through the magnetic field of the sensor. The measurement results are calculated by a dedicated software. The visualization system displays the output of the measurement and issues a warning in case the preset values are exceeded.

Haze Monitoring

In order to increase the efficiency of thin film solar panels, specific layers of the panels receive a surface structure. This layer roughness is so high it will increase the light trapping effect, which is especially important to the TCO layer of a-Si PV modules. Manufacturers are aiming to keep this effect constant and at an optimized level throughout the production run in order to guarantee highest panel efficiency.

Dr. Schenk’s Haze Monitoring option was developed to check the surface structure of incoming TCO coated glass delivered by the glass supplier as well as solar glass after the coating step at the fab. As soon as process deviations occur, the system reports a variation in the panels’ haze intensity and operation can react quickly to adjust production parameters.

Using the same optical devices as Dr. Schenk’s SolarInspect system, the Haze Monitoring option is a perfect enhancement for quality and process control. It offers an additional feature using the optical cameras of SolarInspect. This renders it an ideal upgrade to inline control for off-line situations.

Layer Thickness Monitoring

With this innovative option PV manufacturers can monitor inline: local thickness variations after layer deposition steps covering the entire panel area. It supports the control of the coating process.

Layer thickness monitoring and inspection run in parallel.

Monitoring system takes advantage of the already existing hardware of the defect inspection system.

• Enhanced technology to process the optical signals.

• Real time 2D visualization map.

For in-line spot tests or for use in off-line situations Dr. Schenk offers alternative sensors which calculate absolute values for the haze intensity at a given panel position.

Warpage Measurement

Warpage of the glass panel can be measured with the Dr. Schenk Warpage Measurement Option.

When a glass panel becomes warped this can indicate a problem during the manufacturing of the panel (such as incorrect annealing or deviations in the coating process). The warped surface of the glass creates problems during handling and leads to unwanted results during lamination and scrib- ing. Furthermore, warpage can also initiate the breakage of the glass in later production steps. Using warpage measurement, this can be detected reliably and early on in the process.
Resistivity Measurement

This add-on to thin-film module inspection measures the sheet resistance of a solar panel’s electrode coating. For optimized panel efficiency, the conductivity of the coating layer should be at a maximum even at low layer thickness.

Dr. Schenk offers a highly sensitive sensor that performs a non-contact resistivity measurement. This in-line measurement makes use of the Eddy current principle. In its down-web movement along the line, the coated solar glass passes through the magnetic field of the sensor. The measurement results are converted and processed by the SolarInspect software. The visualization system displays the output of the measurement and issues a warning if the preset values are exceeded.

Layer Thickness Monitoring

With this innovative option PV manufacturers can monitor and control thin-film layers after layer deposition steps covering the entire panel area. It supports the control of the coating process.

- **Layer thickness monitoring and inspection run in parallel**
- **Monitoring system takes advantage of the already existing hardware of the defect inspection system**
- **Enhanced technology to process the optical signals**
- **Real-time 2D visualization map (see image on left)**

Thickness monitoring uses the high-resolution, low-noise cameras of SolarInspect. As high-performance LED illumination units operating at selective wavelengths are applied, the integration of this measurement option into the inspection system is best planned at an early stage. This saves the expense for a second hardware set and the solar panel inspection system becomes a true all-around solution.

Haze Monitoring

In order to increase the efficiency of thin-film solar panels, specific layers of the panels receive a surface structure. This layer roughness or haze will increase the light trapping effect, which is especially important to the TCO layer of a-Si PV modules. Manufacturers are aiming to keep this effect constant and at an optimized level throughout the production run in order to guarantee highest panel efficiency.

The ideal haze intensity of solar panels’ conductive layers will optimize the light trapping effect and thus, the cell efficiency of the TCO layer on the glass substrate. An optional sensor measures the resistivity of the coating layer and can be used to calibrate the relative monitoring results.

Dimension Measurement

This measurement option focuses on length, width and squareness of the glass panels, which are primarily analyzed at the beginning of the production line.

The Dimension Measurement option for Dr. Schenk’s solar inspection systems offers an additional feature using the optical devices (illumination unit and line camera) of SolarInspect. This renders it an upscale upgrade, leading to automatic in-line control of the incoming glass panels.

Edge Deletion Depth Measurement

When a glass panel becomes warped this can indicate a problem during the manufacturing of the panel (such as incorrect annealing or deviations in the coating process). The warped surface of the glass creates problems during handling and leads to unwanted results during lamination and scrib- ing. Furthermore, warpage can also initiate the breakage of the glass in later production steps. Using warpage measurement, this can be detected reliably and early on in the process.

For in-line spot tests or for use in off-line situations Dr. Schenk offers alternative sensors which calculate absolute values for the haze intensity at a given panel position.

Warpage Measurement

Warpage of the glass panel can be measured with the Dr. Schenk Warpage Measurement Option.

When a glass panel becomes warped this can indicate a problem during the manufacturing of the panel (such as incorrect annealing or deviations in the coating process). The warped surface of the glass creates problems during handling and leads to unwanted results during lamination and scrib- ing. Furthermore, warpage can also initiate the breakage of the glass in later production steps. Using warpage measurement, this can be detected reliably and early on in the process.
Resistivity Measurement

This add-on to thin film module inspection measures the sheet resistance of a solar panel’s electrode coating. For optimized panel efficiency, the conductivity of the coating layer should be at a maximum even at low layer thickness.

Dr. Schenk offers a highly sensitive sensor, that performs a non-contact resistivity measurement. This in-line measurement makes use of the Eddy current principle. In its down-web movement along the line, the coated solar glass passes through the magnetic field of the sensor. The measurement results are converted by a high-resolution analog-to-digital software. The visualization system displays the output of the measurement and issues a warning in case the preset values are exceeded.

Layer Thickness Monitoring

With this innovative option PV manufacturers can monitor relative local thickness variations after layer deposition steps covering the entire panel area. It supports the control of the coating process.

- Layer thickness monitoring and inspection run in parallel
- Monitoring system takes advantage of the already existing hardware of the defect inspection system
- Enhanced technology to process the optical signals
- Real time 2D visualization map (see image on left)

Thickness monitoring uses the high-resolution, low-noise cameras of SolarInspect. As high performance LED illumination units operating at selected wavelengths are applied, the integration of this measurement option into the inspection system is best planned at an early stage. This saves the expense for a second hardware set and the solar panel inspection system becomes a true all-around solution.

Haze Monitoring

In order to increase the efficiency of thin film solar panels, specific layers of the panels receive a surface structure. This layer roughness enhances the light trapping effect, which is especially important to the TCO layer of a-Si PV modules. Manufacturers are aiming to keep this effect constant and at an optimized level throughout the production run in order to guarantee highest panel efficiency.

Dr. Schenk’s Haze Monitoring option was developed to check the layer structure of incoming TCO coated glass delivered by the glass supplier as well as solar glass after the coating step at the fab. As soon as process deviations occur, the system reports a variation in the haze intensity and operation can readjust quickly to adjust production parameters.

Using the same optical devices as Dr. Schenk’s SolarInspect system, the Haze Monitoring option is a perfect enhancement for quality and process control.

- Same hardware set-up as defect analysis system
- Haze monitoring and inspection run in parallel
- Enhanced technology to process the optical signals
- Real time 2D visualization map

For in-line spot tests or for use in off-line situations Dr. Schenk offers alternative sensors which calculate absolute values for the haze intensity at a given panel position.

Edge Deletion Depth Measurement

This measurement solution helps manufacturers of solar modules to control the edge deletion process. Residual layer material in the area of the butyl sealing strip or a tilted glass surface induced during handling and lamination can lead to misalignments of the module. The Edge Deletion Depth Measurement represents the final quality check after front-end processing is completed.

Dimensions

This measurement option focuses on length, width and squareness of the glass panels, which are primarily analyzed at the beginning of the production line.

The Dimension Measurement option for Dr. Schenk’s solar inspection systems offers an additional feature using the optical devices (illumination unit and line camera) of SolarInspect. This renders it an ideal upgrade, leading to automatic in-line control of the incoming glass panels.

For in-line spot tests or for use in off-line situations Dr. Schenk offers alternative sensors which calculate absolute values for the haze intensity at a given panel position.

Haze Monitoring

Using the same optical devices as Dr. Schenk’s SolarInspect system, the Haze Monitoring option is a perfect enhancement for quality and process control.

- Same hardware set-up as defect analysis system
- Haze monitoring and inspection run in parallel
- Enhanced technology to process the optical signals
- Real time 2D visualization map

For in-line spot tests or for use in off-line situations Dr. Schenk offers alternative sensors which calculate absolute values for the haze intensity at a given panel position.

Edge Deletion Depth Measurement

After coating the glass panels with the final layer, the coating material has to be deleted at the edges of the glass. This allows proper weathering of the solar module when bonding the front and back glass.

This measurement solution helps manufacturers of solar modules to control the edge deletion process. Residual layer material in the area of the butyl sealing strip or a tilted glass surface induced during handling and lamination can lead to misalignments of the module. The Edge Deletion Depth Measurement represents the final quality check after front-end processing is completed.

Warpage Measurement

Warpage of the glass panel can be measured with the Dr. Schenk Warpage Measurement Option.

When a glass panel becomes warped this can indicate a problem during the manufacturing of the panel (such as incorrect annealing or deviations in the coating process). The warped surface of the glass creates problems during handling and leads to unwanted results during lamination and scrib- ing. Furthermore, warpage can also initiate the breakage of the glass in later production steps. Using warpage measurement, this can be detected reliably and early on in the process.

Layer Thickness Monitoring

With this innovative option PV manufacturers can monitor relative local thickness variations after layer deposition steps covering the entire panel area. It supports the control of the coating process.

- Layer thickness monitoring and inspection run in parallel
- Monitoring system takes advantage of the already existing hardware of the defect inspection system
- Enhanced technology to process the optical signals
- Real time 2D visualization map

Thickness monitoring uses the high-resolution, low-noise cameras of SolarInspect. As high performance LED illumination units operating at selected wavelengths are applied, the integration of this measurement option into the inspection system is best planned at an early stage. This saves the expense for a second hardware set and the solar panel inspection system becomes a true all-around solution.

Haze Monitoring

In order to increase the efficiency of thin film solar panels, specific layers of the panels receive a surface structure. This layer roughness improves the light trapping effect, which is especially important to the TCO layer of a-Si PV modules. Manufacturers are aiming to keep this effect constant and at an optimized level throughout the production run in order to guarantee highest panel efficiency.

Dr. Schenk’s Haze Monitoring option was developed to check the layer structure of incoming TCO coated glass delivered by the glass supplier as well as solar glass after the coating step at the fab. As soon as process deviations occur, the system reports a variation in the haze intensity and operation can readjust quickly to adjust production parameters.

Using the same optical devices as Dr. Schenk’s SolarInspect system, the Haze Monitoring option is a perfect enhancement for quality and process control.

- Same hardware set-up as defect analysis system
- Haze monitoring and inspection run in parallel
- Enhanced technology to process the optical signals
- Real time 2D visualization map

For in-line spot tests or for use in off-line situations Dr. Schenk offers alternative sensors which calculate absolute values for the haze intensity at a given panel position.

Edge Deletion Depth Measurement

After coating the glass panels with the final layer, the coating material has to be deleted at the edges of the glass. This allows proper weathering of the solar module when bonding the front and back glass.

This measurement solution helps manufacturers of solar modules to control the edge deletion process. Residual layer material in the area of the butyl sealing strip or a tilted glass surface induced during handling and lamination can lead to misalignments of the module. The Edge Deletion Depth Measurement represents the final quality check after front-end processing is completed.

Warpage Measurement

Warpage of the glass panel can be measured with the Dr. Schenk Warpage Measurement Option.

When a glass panel becomes warped this can indicate a problem during the manufacturing of the panel (such as incorrect annealing or deviations in the coating process). The warped surface of the glass creates problems during handling and leads to unwanted results during lamination and scrib- ing. Furthermore, warpage can also initiate the breakage of the glass in later production steps. Using warpage measurement, this can be detected reliably and early on in the process.
Measurement Solutions for Solar Panels

Dr. Schenk GmbH, established in 1985, is an innovative high-tech company based in Munich, Germany. For the third decade now, the range of products and services offered by Dr. Schenk comprises comprehensive solutions for automated quality assurance and production process monitoring for the flat glass, film and foil, converting, paper, solar, optical media and semiconductor industries. In these areas Dr. Schenk continues to set new standards for the inspection of surfaces through the utilization of the latest technical advances in optics and electronics. The company’s primary objective is to achieve complete satisfaction of our customers on a long-term basis. This vision is realized by a perfect synergy between innovative solutions and practical ideas. Global sales and service facilities ensure local support, technical service, training and consulting at any phase of a project. From modular standard units to complex and highly customized systems – Dr. Schenk’s high performance test and inspection products have precision in focus!

For more information and contact details: www.drschenk.com

Even more measurement options for even better results
In addition to the previously described measurement options Dr. Schenk offers more quality-enhancing measurement solutions that can be used in-line or as stand-alone units. True to the meaning of metrology, all measurement options provide manufacturers with data to adjust and optimize production.

The Dr. Schenk SolarMeasure Microscope Station measures the distance between and the width of scribe lines.
The Dr. Schenk SolarMeasure Electrical Insulation Tester performs electrical insulation tests between the solar cells after scribing.
The Dr. Schenk SolarMeasure I-V Curve Tracer enables measurement of every single cell’s electrical performance as well as that of the whole panel.

And last but not least the SolarMeasure TCO Tester completes the measurement portfolio with the in-line measurement of layer thicknesses, haze and resistivity of TCO coatings.

For more detailed information on these options please refer to our specific descriptions and data sheets.

Quality Control
- Establish quality standards and sort out panels that do not meet them
- Create price categories according to quality ratings

Process Control
- Improve YIELD by quickly identifying the source of a defect and fixing the problem right away

Solar Measure Options
- TCO resistivity measurement
- Layer thickness monitoring
- Glass sheet dimension measurement
- Wafer monitoring
- Edge deletion depths measurement
- Wrapge measurement
- Drill hole measurement

Dr. Schenk offers all-in-one quality assurance and process control systems for the production of solar panels.

The SolarInspect system for the detection of local irregularities can be combined with the advanced measurement options of SolarMeasure to create a comprehensive process control solution.

The products of the SolarMeasure family perform electrical and physical measurements and are available as add-on options to the optical analysis or as stand-alone systems.
Dr. Schenk's modern production site

Even more measurement options for even better results

In addition to the previously described measurement options Dr. Schenk offers even more quality-enhancing measurement solutions that can be used in-line or as stand-alone units. True to the meaning of metrology, all measurement options provide manufacturers with data to adjust and optimize production.

One important measurement option is the **Dr. Schenk SolarMeasure Microscope Station**. This station measures the distance between and the width of scribe lines. It also measures the distance between the edges of drill holes and the scribe lines. This helps to ensure that the drill holes are accurately placed and that the edges of the drill holes are not damaged.

Another important option is the **Dr. Schenk SolarMeasure Electrical Insulation Tester**. This tester performs electrical insulation tests between the solar cells after scribing. It helps to ensure that the solar cells are properly insulated and that there are no electrical shorts or other defects.

The **Dr. Schenk SolarMeasure I-V Curve Tracer** enables measurement of the electrical performance of individual solar cells. This helps to ensure that the solar cells are functioning properly and are generating the maximum amount of electricity.

Finally, the **Dr. Schenk SolarMeasure TCO Tester** completes the measurement portfolio with in-line measurement of layer thickness, haze and resistivity of TCO coatings.

For more detailed information on these options please refer to our specific descriptions and data sheets.